

FRC Team 6377

Don’t Break Your Bot

A Guide for Testing Large and Delicate Mechanisms

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 1
Website: www.howdybots.org

Table of Contents

Table of Contents 2

Motivation 3

Understand your mechanism 4
Physical System 5
Control System 6
Calculate Motion Magic constants 7

Test Setup with CTRE’s Phoenix Tuner 10
Install CTRE software 10
Connect CAN bus wires and set CAN IDs 11
Set Control System Values 11

Robot Test with Motors Unplugged 11
Robot Test with Motors Plugged In 13
Tune PIDF and Motion Magic constants 13
Additional Recommendations 15

Glossary 16

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 2
Website: www.howdybots.org

Motivation

Control is a big part of robotics, and controlling high-power, robust mechanisms
can be a challenging step for any team. For us at 6377, safety when programming
our robot is a primary concern for students, mentors, and the robot itself.
Therefore, we have implemented tools and processes that enable us to test and
iterate over a solid foundation, knowing the system will behave as expected in a
consistent way, even before plugging in the motors.

Therefore, in 2018 we adopted a CTRE-based hardware and software configuration
(CTRE stands for Cross The Road Electronics, LLC.), in which an ecosystem of Talon
SRX and Victor SPX motor controllers play together with our NI LabVIEW-based
code to provide precise movement to our robot’s systems. These motor controllers,
which work directly from the roboRIO’s CAN bus, include their own control loops.
They allow off-loading of processing from the robot’s main controller, keep the
control loop within its 20ms timeframe, and can be configured on-the-fly as the
code initializes and runs.

This whitepaper is designed to walk you through all of the steps of making your
robot use Motion Magic, without “guess and check” that can lead to breaking of
mechanisms very quickly. The process that Team 6377 has come to use with
success is detailed below, split up into mechanical and programmatic, walking
through mechanical considerations how to use Motion Magic mode, and how we
approach tuning.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 3
Website: www.howdybots.org

Understand your mechanism

Understanding your mechanism requires a knowledge of each one of its
components. The core components of a mechanism usually entail the motor, gears,
and the final output (e.g. wheels, arms, or elevators). Understanding the way these
parts respond when force is applied, either intentional or not, is important to
control the mechanism with high accuracy and precision.

Understanding the way that torque affects your mechanism and how it fails can be
useful in determining its weak spots, as well as predicting how it will fail. Building in
points of failure, like a chain that is weaker than the rest of the mechanism, can
reduce overall damage, make the mechanism easier to fix and limit the amount of
gearbox maintenance the team will have to invest when something goes wrong.

For example, our 2019 robot’s gearbox consists of 2 mini-CIM motors connected to
a custom 3-stage gearbox, with an output that is then further geared down by a
chain system before moving the arm. Things to consider while using this gearbox
are that, 1) every stage of the gearbox changes direction, 2) the chain system does
not, and 3) the encoder is mounted on the second stage of the gearbox.

This knowledge of your system is necessary to prevent damage, especially in high-
power systems.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 4
Website: www.howdybots.org

Physical System
To better know your gearbox you can use a modified version of the JVN
spreadsheet (Found here) to determine the gear ratios between your input and
output shafts. This spreadsheet was first developed by a mentor from team 148 and
has been extensively used by the FIRST Robotics Competition community. Our
version has been modified to calculate P, F, and Motion Magic constants with only a
few basic inputs.

To evaluate your physical system, consider the following questions:

● What direction does the motor turn when positive power is applied?
Verify behavior by either looking up the specifications sheet or running a
separate motor with a flag on the output shaft.

● What is the direction of your gearing mechanism? When positive power is

applied to the motor, does the system move in the “positive” direction? In
other words, does the motor and the mechanism move in the expected
direction? If the system moves in the “negative” direction when positive
power is applied, the motor output should be inverted.

● Where is your encoder on the gear stack? What direction does it turn?

If the encoder moves in the “negative” direction when positive power is
applied, the sensor phase should be inverted.
If the encoder is closer to the motor, you can achieve higher encoder
resolution, which makes feedback loops and PIDF tuning simpler. However,
this approach can run into problems, such as hot motors melting encoders
and not accounting for slop at the end of the mechanism. Fortunately, many
of these problems are minimal to nonexistent in the majority of FRC
applications. On the other hand, running encoders closer to the end effector
can account for some slop, but the combination of that slop and lower
encoder resolution can cause more problems than it solves when it comes to
PIDF tuning. Although there are trade offs with encoder positioning, the
howdy bots recommend that you place your encoder as close to the motor as
is practical.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 5
Website: www.howdybots.org

https://howdybots.org/wp-content/uploads/2019/12/HB_PID-JVN-DesignCalc.20191207.xlsx

● Does your mechanism require the robot to be placed into a specific
configuration to set the first value of your encoders during initialization? If
so this should be taken into consideration when making testing plans.

● What are the physical limits of the system? What are the safety mechanisms

to prevent the robot from breaking itself such as physical stops, limit
switches, encoder positions?

Control System
Once you understand the physical characteristics of your robot’s system, you need
to determine how the mechanism should be controlled. Mechanisms can be
controlled directly by the driver (e.g. using a joystick), or indirectly by a command
which causes the system to move to a specified target. They also can be controlled
by specifying motor output, velocity, or target positions. Calculate a preliminary set
of values that will guide your exploration when tuning the mechanism. These values
should align with the control algorithm you desire to implement, which will depend
on its movement type and how it will be controlled by the code.

For CTRE devices, the options for control include percent Vbus, velocity PIDF,
position PIDF, and Motion Magic. This paper will be covering the Motion Magic
mode, though many concepts will transfer to other control modes.

Many of the control schemes deal with PIDF control, a control option that uses
feedback from an external sensor and uses a PIDF loop. P stands for proportional,
and applies more power the greater the error. I stands for Integral, and takes into
account how long the mechanism has been away from the target, and adds more
power the longer and greater the error. D stands for derivative and provides a
damping affect the faster and closer the error decreases. F stands for feed forward,
that is a calculated factor and is a starting point for the other factors to work off of.
For more information on PIDF Refer to this paper by Tim Winters,
(https://frc-pdr.readthedocs.io/en/latest/control/pid_control.html)

● Percent Vbus
○ This is the most basic control system using only the percent of

maximum voltage to run to the motor from the motor controller.
Useful for things such as intakes and quick tests, or anything that
needs no feedback.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 6
Website: www.howdybots.org

https://frc-pdr.readthedocs.io/en/latest/control/pid_control.html

● Feedback control schemes.

All of these control options use feedback from an external sensor and
all of them use a PIDF loop.

○ Velocity PIDF
This uses feedback from a sensor to drive to a specific velocity
using a PIDF loop. The system will accelerate to the target as
quickly as possible. Good for drivetrains and high precision
shooters.

○ Position PIDF
This uses feedback from a sensor to drive to a specific position
using a PIDF loop. The system will accelerate to the target as
quickly as possible. Good for small light mechanisms, but is
outclassed by Motion Magic.

○ Motion Magic
This generates a trapezoidal motion profile based on an
acceleration and velocity constant, then uses a PIDF loop to stay
on the profile. This is one of the best ways to control position in
a system, but is more complicated than a position PIDF.

For clarification regarding these refer to the CTRE documentation [1].

Calculate Motion Magic constants
We compute the system control values based on the physical system rather than
experimenting with the system. Experimentally determining these values requires
time on the robot and in some systems, like our 2019 robot’s arm, a P value that
makes the system oscillate may cause damage to the system. Our modified JVN is
an amalgamation of the original JVN that is able to calculate these control values.
The spreadsheet includes input cells which describe the physical system and
control system values such as desired rotational speed, and distance to P
saturation. Output values are used to fill in values of F, P, Max Velocity, and Max
Acceleration.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 7
Website: www.howdybots.org

https://phoenix-documentation.readthedocs.io/en/latest/ch16_ClosedLoop.html
https://www.thecompassalliance.org/single-post/2017/12/07/JVN-Mechanical-Design-Calculator

1. Use Modified JVN to calculate the theoretical maximum for Feed Forward(F).
For a rotary mechanism, specify the desired rotational speed and for linear
mechanisms, specify the desired linear speed. A good value for this is 60% to
80% of the theoretical maximum speed (loaded).

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 8
Website: www.howdybots.org

Figure 1. Modified JVN computation for our 2019 robot’s arm with motors, gear box, and load.
The controlled rotational speed is 60 degrees per second (~80% of loaded theoretical maximum
speed). When the arm is 10 degrees off its target, the motors will drive at full power. The arm
accelerates to the target speed in .85 seconds.

2. Calculate proportional(P). How far should the final mechanism move before
the motor should apply full power? This value will determine the response
rate of the mechanism and will do the most to the control of the mechanism.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 9
Website: www.howdybots.org

3. Determine the maximum velocity of the system. This can be computed in the

worksheet. When setting max velocity in the control system, set it at least 10
percent below computed loaded velocity to allow headroom for PIDF control.

4. Determine the desired acceleration of the system. This is how quickly the
system will reach the maximum velocity. If the system should take 1 second
to accelerate to max velocity, then these values will be the same. If
acceleration is half of the velocity it will take 2 seconds, if it’s double, half a
second, etc. a good starting point for most systems is to accelerate to Max
velocity over 3-5 seconds. As you gain confidence with the system, you can
decrease the time to Max velocity until you see error increasing in the tuner,
or you get too much stress on the mechanical components Acceleration is
what puts the most stress on, and applies the most force to the mechanism,
contrary to just coasting at a constant velocity.

Test Setup with CTRE’s Phoenix Tuner

Since we use CTRE motor controllers, we also use CTRE Phoenix Tuner software
for testing. This software has many functions that are useful for testing and
debugging CTRE devices

Install CTRE software
Phoenix documentation
The Phoenix documentation which is referenced in this whitepaper has a wealth of
information about the Phoenix Tuner, Talon SRX, Victor SPX, and the CAN bus. If
you have any questions, chances are the answers are contained in these docs.
The Phoenix Tuner is a live tool for configuring and viewing outputs from the Talon
SRX and Victor SPX. It can be used for plotting outputs, changing CAN IDs,
changing PIDF values on the fly, and more generally, it can be used to change and
read parameters on CTRE motor controllers. (Download latest Phoenix framework
installer for the most up-to-date Tuner and CTRE firmware)

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 10
Website: www.howdybots.org

https://phoenix-documentation.readthedocs.io/en/latest/
http://www.ctr-electronics.com/hro.html#product_tabs_technical_resources

Connect CAN bus wires and set CAN IDs
Make sure your wires are securely connected and that all of the motor controllers
show that they are connected (blinking yellow for the Talon SRX and Victor SPX).
This blink code means they are connected. Refer to the motor controller’s
documentation to find the other blink codes that are configured for your device. If
the LEDs are blinking red, it is likely that either there is a loose CAN connection, a
CAN wire is plugged in backwards, or a loop has been created on the CAN network.
If there is another problem refer to the motor controller’s documentation .
Additionally, you must set unique IDs for each device. For setting CAN IDs in CTRE
devices use these steps .

Set Control System Values
These values can be set in either code or in the Phoenix Tuner (under the config
tab). The advantage of using the tuner to edit the constants is that they can be
updated in between each test on-the-fly, without redeploying code in between
each test; this also reduces the chances for errors caused by code changes. There is
a set of constants that are related to the physical system and should not change (i.e.
motor output and encoder phase and invert). Another set of values are configurable
and may change during operation of the robot. (i.e. PIDF values, max velocity,
acceleration, etc.)

Robot Test with Motors Unplugged
When running high power systems, the way that the system fails, and the amount
of time it takes to fail change dramatically. To minimize risk, our testing procedure
is to unplug the motors, and use the indicator lights on the Talons to tell if the
behavior is expected.

1. Ensure that the motor controllers are wired up to power, the CAN bus, and
encoder(s).

2. Ensure that the motor controller outputs are unplugged.
3. Plug in a spare motor to the output of one motor controller and test if the

direction is correct relative to the lights on the motor controller. Then
repeat for all motors in the system, If one of the motors is wrong verify that
the invert on that motor controller is set correctly based on the physical
system.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 11
Website: www.howdybots.org

https://phoenix-documentation.readthedocs.io/en/latest/ch08_BringUpCAN.html
https://phoenix-documentation.readthedocs.io/en/latest/ch08_BringUpCAN.html

a. Make sure to use the same type of motor, as different motors have
different directions of spin (Bag and Cim turn in different directions).

b. If there is a gear box between the motor and the output, double check
that the output will be going in the direction that you expect.

4. Run through the expected actions of the robot and manually move the
mechanism; thus causing the encoder to change, verify if the spare motor
output speed and direction are as expected.

5. Ensure that the encoder moves in the expected direction relative to how the
physical system is moved. When the system is moved in the positive
direction, does the encoder move in the positive direction? Verify that the
sensor phase is set correctly based on the physical system. If the sensor phase
is inverted, the encoder will read more and more negative as more power is
applied, and the power will max almost instantly.

6. Use the Tuner to set a target encoder point.
a. Manually move the system to the specified target position. Ensure that

the motor controller output goes to zero when the system is at the
desired location.

b. Move the system away from the target in the positive direction. The
motor controllers should begin to blink red. Move the system away
from the target in the negative direction. The motor controllers should
begin to blink green. If this is not the case, check that the sensor phase
and invert are set correctly based on the physical system.

c. Move the system away from the target until the motor controllers turn
solid red and solid green in each direction. These are the points where
P is at saturation and the motor controller is applying maximum
power.

i. To decrease this range, increase P.
ii. To increase this range, decrease P.

d. If the motors drive outside the intended range of motion of the
mechanism or way past the expected point, check the sensor phase ,
gear ratios and encoder wires.

i. If the encoder wires are not plugged in or severed, the encoder
position will always stay at zero, leading to infinite movement.

ii. if the gear ratios are wrong, then the system will travel a
different rate proportionally, possibly leading to movement
through the robot.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 12
Website: www.howdybots.org

Robot Test with Motors Plugged In
This step is vitally important to ensure the proper functioning of your robot, but is
also the step where the most damage can be caused to your mechanism. This is the
time in the process where everything needs to be thought through carefully before
executing. Make sure the previous step is completed before moving on to this step.

1. Disable the robot before plugging in the motors.
2. Have one of your team members put their hand over the robot’s main

breaker, while standing in a safe location relative to the mechanism being
tested

3. Plug in the motors, look for any form of sparking or smoking. If any smoking,
sparking or movement happens, then power off the robot immediately, and
recheck your wiring.

4. Once the motors are plugged in, and there have been no sparks, place the
mechanism in a mid-position in which there is time to disable it before it
runs into anything. For example, an arm rotating more than its expected
angle, or an elevator hitting its maximum height.

5. Make sure that the space around the mechanism is clear throughout all the
motion path of the mechanism. Enable with a hand over the disable button,
as well as the robot’s main breaker. If the mechanism doesn't do exactly what
is expected, disable the robot and look through your code to find the issue.

a. If more than one motor are physically linked together, such as through
a gearbox make sure to plug in and test them one at a time, to prevent
motor burnouts or gear shredding

6. If the robot does as you expect, then use the tuner control tab to make your
robot move in small increments. As an added precaution make sure to set the
movement amounts (in ticks) to a value that will not come close to the edge
of the range of movement.

7. Run the mechanism between a number of points to verify the motion is as
you expect. Once proper behavior is achieved, move on to the next section

Tune PIDF and Motion Magic constants
1. Using the Phoenix tuner and the Modified JVN spreadsheet tune these

constants:

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 13
Website: www.howdybots.org

2. Set up the tuner so that you can edit constants on the robot, and view the

plot at the same time.

3. Run the mechanism while plotting the Percent Output, Position, Velocity,
Closed Loop Error, as well as Motion Magic Position and Velocity. Once the
movement finishes make sure to disable the plot, as the data will be lost if it
goes off the side of the screen.

4. Look at the plot for oscillations that don't show up visually. These will usually
appear as spikes in the percent output graph and rapid changes in the
closed-loop error. If these show up, then lower the distance to P saturation
on the JVN spreadsheet, and update values on the Tuner, until the
oscillations decrease. If the oscillations will not go away, consider increasing
the D constant in the loop to add a damping effect to reduce oscillations.
Another possible cause is max allowable error which can cause spikes in
percent output, max allowable error acts as a deadband for the PIDF loop,
and if its too high the percent output will jump from zero to a high value and
back, very quickly.

5. Look for increasing closed loop error: this can encompass a number of
things. If the closed-loop error only increases as the motion magic profile is
accelerating, then your acceleration term is too high. Decrease the time to

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 14
Website: www.howdybots.org

max acceleration in the JVN. If the error increases continuously over the
profile, then your velocity or acceleration is probably too high, if so, decrease
controlled speed. If there is a constant error that won't go away, increase P,
if oscillations start happening before the error goes away, consider
increasing the I constant in the loop. BE VERY CAREFUL WITH I, as it is very
quick to cause oscillations; a very small amount goes a very long way.

6. Repeat these processes until your closed loop error is as low as possible
(generally if the error is much smaller than the slop in the mechanism, it’s
good enough), and the plots for position, velocity, and percent output are
smooth.

7. If you want to limit stress on your robot, reduce acceleration. Acceleration
tends to cause the most problems, but also is a major contributor in
achieving the required position promptly.

8. When tuning is finished, make sure to document the constants and put them
into the code, because the constants might not persist between robot reboot
cycles, or the swapping of a motor controller.

Additional Recommendations
The following are recommendations that we have seen useful and provide
additional stability to the mechanism you are tuning.

● Keep your constants saved somewhere off the robot. Consider using a shared
document to store them for each of your mechanisms.

● Consider using a configuration file to tune and load the mechanism’s
constant values in your code and be able to tune them easily.

● Communicate with the drive team. Make sure they understand the physical
system and tuning of the robot so that they can recognize and report
discrepancies in expected behavior.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 15
Website: www.howdybots.org

Glossary

Invert changes the direction that the motor controller thinks is
positive.

Sensor Phase changes if the direction that the encoder thinks is

positive to the way that the motor controller thinks os
positive

Mini-CIM commonly used motor in FRC

Gearbox Stage gear set in a gearbox to change output ratio

Chain system set of sprockets and chain to transfer force from one

point to another while possibly changing output ratio

Encoder a device that is used to measure rotary position, the one

referred to in this paper, the CTRE magnetic encoder,
uses a magnet mounted in the end of the shaft to tell
position

Resolution as referring an encoder, resolution is number of

measurements (ticks) per revolution

Slop refers to the amount of movement a mechanism can

make without moving the motor

Limit Switch a physical switch placed on the edge of range of motion,

when this switch is tripped, motor output moving the
mechanism in that direction is disabled

Error/Closed loop error difference between the target position of a control loop

and the actual position of the mechanism as measured by
an encoder or another device.

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 16
Website: www.howdybots.org

Control Loop a system used to control a motor to a specific position or
velocity

Feedback Loop a control loop that uses feedback, generally from an

encoder or similar device, to optimize control

PIDF a feedback loop commonly used in many applications that

uses 4 different terms to coordinate motion, see page 6
for more information

Tuning the process of tweeking constants to make the

mechanism move in a more optimal way

Motion Magic a control loop that automatically generates trapezoidal

motion profiles from a maximum velocity and
acceleration term

Blink codes a blink code is a series of blinks on an LED that signals

something

Howdy JVN a customized JVN spreadsheet used for calculating PIDF

constants and motion magic constants. Can be found at
https://howdybots.org/wp-content/uploads/2019/12/
HB_PID-JVN-DesignCalc.20191207.xlsx

The Howdy Bots, FRC Team 6377
2019 Don’t Break Your Bot Whitepaper v1 Pg. 17
Website: www.howdybots.org

https://howdybots.org/wp-content/uploads/2019/12/HB_PID-JVN-DesignCalc.20191207.xlsx
https://howdybots.org/wp-content/uploads/2019/12/HB_PID-JVN-DesignCalc.20191207.xlsx

